
BACKGROUND

String Interning: CLR and the Intern Pool

Briefly, the Common Language Runtime stores strings by using a table called “Intern
Pool” that contains a single reference to each unique literal string declared or created in
your program. Because of that, an instance of a literal string with a particular value
only exists once in the system. Consequently, all occurrences of "" refer to the
same string literal (for an empty string) as string.Empty, which means they are, in
fact, equivalent.

How can we test this?

SHORT ANSWER

AN IN-DEPTH EXPLANATION

THE COMPILATION PROCESS

3

1

2

Without having to know exactly what every code line does, we can still easily see
that in the final JIT output (3) the same memory address [0x12a62018] is used for
both string.Empty and "" that is moved using the "mov" statement into the register
ecx. This demonstrates that both are interned, meaning that they are practically
the same.

You can prove this by modifying one of the strings (adding some characters) in the C# code and then
checking that, in this case, the memory addresses in the generated native code are going to differ.

C#
Code

IL Native
Code

C#
Compiler

JIT
Compiler

A brief overview on string interning and the compilation process in C#

In the past few months several fellow C# developers advised me that to
create empty string variables, I should use String.Empty (or the
lower-cased alias “string.Empty”) because each time “” is used, a new
object is created, leading to performance penalties. Is this accurate? Here’s
my investigation about the topic ...

No, it’s not!

Performance-wise there's no difference between
the two. The reason for that is because of string
interning. Both strings get interned. How does
that work?

The source code written in C# (1) gets
translated to IL (Intermediate
Language) (2) and is later converted to
Native Code (a CPU-specific code) by
a JIT (just-in-time compiler) (3).

Let's check a brief summary of how the compilation process works ...

Here are some screen captures of this process, testing the creation of empty strings
variables using string.Empty and "":

String.Empty VS ""

MAKING A DECISION

FINDING DIFFERENCES

REFERENCES AND LINKS

ABOUT

In Attribute arguments. Example:

As a default parameter. Example:

As a case expression in a switch statement. Example:

One may think that it’s possible to use them in any situation interchangeably,
but, beware! There are some differences:

string.Empty is a readonly field while "" is a const meaning that the first one,
as a readonly field, won’t be suitable to be used in certain code blocks.

Some examples with code snippets (where string.Empty is NOT suitable) are:

 C#, IL, JIT prints generated at https://sharplab.io/q

Managed Execution Process (Microsoft Docs) at
https://docs.microsoft.com/en-us/dotnet/standard/managed-execution-process

String.Intern(String) Method (System) (Microsoft Docs) at
https://docs.microsoft.com/en-us/dotnet/api/system.string.intern?view=net-5.0

C# version used: 9.0

Now that we know all of that, you may ask: Which one should I use?
Some would say that "" is more concise, thus better for readability. Others may think that it
can be confused with a string that a programmer forgot to complete, while string.Empty
shows "intent" of it being really empty.

My answer: ? Choose either as long as you use it consistently throughout the code.
Disclaimer: The wrong fact that an object is created each time "" is used may date back to
the initial versions of C#/.NET, where it may have worked that way (I couldn't find this
specific behavior in the official documentation by Microsoft for those versions).

However, before wrapping this up, a few more thoughts ...

Hi, I'm Nahuel Ramos, a Software Analyst. I currently work as a developer at
Softensity, back-end focused with .NET Core as the main technology. As a fan
of the IT world, I’m constantly seeking to learn about new technologies and to
grow as a professional.

https://www.linguee.es/ingles-espanol/traduccion/interchangeably.html
https://docs.microsoft.com/en-us/dotnet/standard/managed-execution-process
https://docs.microsoft.com/en-us/dotnet/standard/managed-execution-process
https://docs.microsoft.com/en-us/dotnet/standard/managed-execution-process
https://docs.microsoft.com/en-us/dotnet/api/system.string.intern?view=net-5.0

